- linearly independent tensor
- линейно независимый тензор
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Tensor product — In mathematics, the tensor product, denoted by otimes, may be applied in different contexts to vectors, matrices, tensors, vector spaces, algebras, topological vector spaces, and modules. In each case the significance of the symbol is the same:… … Wikipedia
Tensor — For other uses, see Tensor (disambiguation). Note that in common usage, the term tensor is also used to refer to a tensor field. Stress, a second order tensor. The tensor s components, in a three dimensional Cartesian coordinate system, form the… … Wikipedia
Metric tensor — In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold (such as a surface in space) which takes as input a pair of tangent vectors v and w and produces a real number (scalar) g(v,w) in a… … Wikipedia
Rank (linear algebra) — The column rank of a matrix A is the maximum number of linearly independent column vectors of A. The row rank of a matrix A is the maximum number of linearly independent row vectors of A. Equivalently, the column rank of A is the dimension of the … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Eigenvalues and eigenvectors — For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… … Wikipedia
Eigenvalue, eigenvector and eigenspace — In mathematics, given a linear transformation, an Audio|De eigenvector.ogg|eigenvector of that linear transformation is a nonzero vector which, when that transformation is applied to it, changes in length, but not direction. For each eigenvector… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Curvilinear coordinates — Curvilinear, affine, and Cartesian coordinates in two dimensional space Curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian… … Wikipedia
solids, mechanics of — ▪ physics Introduction science concerned with the stressing (stress), deformation (deformation and flow), and failure of solid materials and structures. What, then, is a solid? Any material, fluid or solid, can support normal forces.… … Universalium
Fluid solution — In general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid.In astrophysics, fluid solutions are often… … Wikipedia